LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER - APRIL 2013

MT 3501/MT 3500 - ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date: 29/04/2013

Dept. No.

Max.: 100 Marks

Time: 9:00 - 12:00

PART – A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- 1. Evaluate $\int_0^1 \int_0^1 \int_0^1 x^2 dx dy dz$.
- Show that $\beta(m, n) = \beta(n, m)$. 2.
- 3. Form a partial differential equation by eliminating the arbitrary constants a and b from z = (x+a)(x+b).
- 4. State Lagrange's equation.
- 5. If $\phi(x,y,z) = x^2y + y^2x + z^2$, find $\nabla \phi$.
- 6. Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\vec{i} + (3xz + 2xy)\vec{j} + (3xy 2xz + 2z)\vec{k}$ is irrotational.
- 7. Find $L^{-1}(\frac{s}{s^2-2})$.
- 8. Find L (Sin at).
- 9. Define Euler's function.
- 10. State Fermat's theorem.

<u> PART - B</u> (5X8=40) (Answer any FIVE questions)

11 Evaluate $\iint xy \, dx \, dy$ over the domain bounded by x-axis, x=2a and the curve x² =4ay.

12. Change the order of integration and evaluate $\int_{1}^{2} \int_{0}^{4-x^{2}} (x+y) dx dy$.

13. Obtain the complete and singular solution of $\frac{z}{na} = \frac{x}{a} + \frac{y}{n} + \sqrt{pq}$.

14. Solve (mz - ny)p - (nx - lz)q = ly - mx.

15. Find $\int_C F dr$ where $\overline{F} = (x^2 - y^2)i + 2xyj$ where C is the square bounded by the coordinates axes and the lines x=a and y=b.

16. Find L($\frac{\cos 3t - \cos 2t}{t}$). 17. Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$.

18. Find the remainder when 2^{1000} is divisible by 17.

<u> PART – C</u>

(Answer any TWO questions)

19. (a) Evaluate $\iiint xyz \, dx \, dy \, dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^{2}$.

(b) Show that
$$\beta$$
 (m, n) = $\frac{\Gamma(n)\Gamma(m)}{\Gamma(m+n)}$.

- 20. (a) Solve $p^2 + q^2 = z^2(x + y)$
 - (b) Solve (3z 4)p + (4x 2z)q = 2y 3x.
- 21. (a) Show that 8th power of any number is of the form 17p or 17p \pm 1.
 - (b) Verify Stroke's theorem when $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ and the surface is the part of the sphere

 $x^{2} + y^{2} + z^{2} = 1$ along the XY plane.

22. Using Laplace transform solve $\frac{d^2t}{dt^2} + 6\frac{dy}{dt} + 5t = e^{-2t}$ given that y = 0 and $\frac{dy}{dt} = 1$ when t= 0.

\$\$\$\$\$\$