MT 3501/MT 3500-ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date: 29/04/2013
Dept. No. \square

Max. : 100 Marks

Time: 9:00-12:00

PART - A

(Answer ALL questions)

$(10 \times 2=20)$

1. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.
2. Show that $\beta(m, n)=\beta(n, m)$.
3. Form a partial differential equation by eliminating the arbitrary constants a and b from $z=(x+a)(x+b)$.
4. State Lagrange's equation.
5. If $\phi(x, y, z)=x^{2} y+y^{2} x+z^{2}$, find $\nabla \phi$.
6. Show that $\bar{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \vec{\imath}+(3 x z+2 x y) \vec{\jmath}+(3 x y-2 x z+2 z) \vec{k}$ is irrotational.
7. Find $\mathrm{L}^{-1}\left(\frac{s}{s^{2}-9}\right)$.
8. Find L (Sin at).
9. Define Euler's function.
10. State Fermat's theorem.

PART - B
$(5 \times 8=40)$
(Answer any FIVE questions)
11 Evaluate $\iint x y d x d y$ over the domain bounded by x-axis, $x=2$ a and the curve $x^{2}=4 a y$.
12. Change the order of integration and evaluate $\int_{1}^{2} \int_{0}^{4-x^{2}}(x+y) d x d y$.
13. Obtain the complete and singular solution of $\frac{z}{p q}=\frac{x}{q}+\frac{y}{p}+\sqrt{p q}$.
14. Solve (mz-ny)p-(nx-lz)q=ly-mx.
15. Find $\int_{C} F$. $d r$ where $\bar{F}=\left(x^{2}-y^{2}\right) \mathrm{i}+2 x y j$ where C is the square bounded by the coordinates axes and the lines $x=a$ and $y=b$.
16. Find $\mathrm{L}\left(\frac{\operatorname{Cos} 3 t-\operatorname{Cos} 2 t)}{t}\right)$.
17. Find $\mathrm{L}^{-1}\left(\frac{1}{s\left(s^{2}+a^{2}\right)}\right)$.
18. Find the remainder when 2^{1000} is divisible by 17 .

PART - C

(Answer any TWO questions)

19. (a) Evaluate $\iiint x y z d x d y d z$ taken through the positive octant of the sphere

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

(b) Show that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(n) \Gamma(m)}{\Gamma(m+n)}$.
20. (a) Solve $p^{2}+q^{2}=z^{2}(x+y)$
(b) Solve $(3 z-4) p+(4 x-2 z) q=2 y-3 x$.
21. (a) Show that $8^{\text {th }}$ power of any number is of the form 17 p or $17 p \pm 1$.
(b) Verify Stroke's theorem when $\bar{F}=y \bar{i}+z \bar{j}+x \bar{k}$ and the surface is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ along the $X Y$ plane.
22. Using Laplace transform solve $\frac{d^{2} t}{d t^{2}}+6 \frac{d y}{d t}+5 \mathrm{t}=\mathrm{e}^{-2 \mathrm{t}}$ given that $\mathrm{y}=0$ and $\frac{d y}{d t}=1$ when $\mathrm{t}=0$.

